Study reconciles persistent gap in natural gas methane emissions measurements by Staff Writers Fort Collins CO (SPX) Oct 30, 2018
A new study offers answers to questions that have puzzled policymakers, researchers and regulatory agencies through decades of inquiry and evolving science: How much total methane, a greenhouse gas, is being emitted from natural gas operations across the U.S.? And why have different estimation methods, applied in various U.S. oil and gas basins, seemed to disagree? The Colorado State University-led study, published Oct. 29 in Proceedings of the National Academy of Sciences, resulted from a large, multi-institutional field campaign called the Basin Methane Reconciliation Study. The researchers found that episodic releases of methane that occur mostly during daytime-only maintenance operations, at a few facilities on any given day, may explain why total emissions accountings have not agreed in past analyses. With invaluable assistance from industry partners, the researchers have significantly advanced basin-level emission quantification methods and shed new light on important emissions processes. "Our study is the first of its kind, in its scope and approach," said Dan Zimmerle, senior author of the PNAS study, and a senior research associate at the CSU Energy Institute. "It utilized concurrent ground and aircraft measurements and on-site operations data, and as a result reduces uncertainties of previous studies." The Basin Methane Reconciliation Study included scientists from CSU, Colorado School of Mines, University of Colorado Boulder, the National Oceanic and Atmospheric Administration, and the National Renewable Energy Laboratory. Other scientific partners were University of Wyoming, Aerodyne, AECOM, Scientific Aviation and GHD. The field campaign took place in 2015 in the Fayetteville shale gas play of Arkansas' Arkoma Basin.
Coordinated effort The research team set out to investigate the persistent gap between two widely used methods of estimating methane emissions from natural gas operations. "Bottom-up" estimates, such as those used in the EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks, are developed by measuring emissions from a representative sample of devices, scaled up by the number of devices or emission events. In contrast, "top-down" measurements can be performed at a regional scale, such as flying an aircraft upwind and downwind of a study area to derive total emissions from methane entering or leaving a basin. In the past, most aircraft-based, basin-scale emissions estimates have been statistically higher than estimates based on bottom-up accounting. "The key to our efforts was having everyone out in the same field, at the same time," said Gabrielle Petron, a research scientist from CIRES at CU Boulder and NOAA who was the principal investigator for the top-down measurement team. "By comparing the merits and pitfalls of multiple methods of measurement, we were able to paint a much more comprehensive, and we believe accurate, picture of the methane emissions landscape for natural gas infrastructure."
Lead-up papers evaluate multiple methods The entirety of those research efforts culminated in the CSU-led PNAS paper that synthesized all the data taken by the research teams. This capstone paper compared a bottom-up estimate that accounted for the location and timing of emissions, with a top-down estimate developed via aircraft measurement - an analysis that had never been done before. One of the study's key insights was the importance of understanding the timing of measurements and daytime maintenance activities, which likely explains the persistent gap between previous top-down and bottom-up estimates.
Short periods of high emissions These activities typically happen during the day, around the same time a research aircraft would be conducting measurements. This diurnal variability of methane emissions, the researchers concluded, may help explain why estimates from aircraft measurements have previously been higher than estimates based on annual bottom-up inventories. In this study, for the first time, the researchers showed that the east-to-west variation of methane emissions across the basin, derived from aircraft measurements, were reproduced by the high-resolution, bottom-up emissions model developed by the CSU team. Industry partnerships and public/private funding Working with industry technical experts gave the study team invaluable full site access for bottom-up measurements and hourly and spatially resolved operational data. The data improved the understanding of the magnitude and timing of emissions, particularly for episodic events like maintenance operations. "What we have found is that we have two good methods of measurements. If you want to compare them, you have to account for timing and location of emissions," said PNAS lead author Tim Vaughn, a CSU research scientist. Applicability of these results to other production basins is not known, the researchers say, without understanding the timing of emissions in those other basins.
Italy's ENI, France's Total increase production amid higher prices Washington (UPI) Oct 26, 2018 Italian oil company Eni and France's Total reported Friday production increases that followed the start of some operations or the ramp-up of existing ones in a context of relatively higher oil prices. Total, citing higher prices, said its "upstream is well positioned to profit from the increase in the oil price thanks to projected production growth in the order of 8 percent in 2018 and 6-7 percent per year between 2017 and 2020". "It will benefit in the coming months from the start-ups o ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |