Oil and Gas News from OilGasDaily.Com  
OIL AND GAS
Researchers discover a new way to produce hydrogen using microwaves
by Staff Writers
Valencia, Spain (SPX) Nov 12, 2020

Jose Serra and Jose Manuel Catala

A team of researchers from the Universitat Politecnica de Valencia and the Spanish National Research Council has discovered a new method that makes it possible to transform electricity into hydrogen or chemical products by solely using microwaves - without cables and without any type of contact with electrodes.

This can represent a disruption in the field of energy research and a key development for the decarbonisation of process industry, as well as for the future of the automotive sector and the chemical industry, among many others. The study has been published in the latest edition of Nature Energy.

The technology developed and patented by the UPV and CSIC is based on the phenomenon of the microwave reduction of solid materials, in this study exemplified by the reduction of Cerium oxide. This method enables to carry out electrochemical processes directly without requiring electrodes, which simplifies and significantly reduce capital costs, as it provides more freedom in the design of the structure of the device and choosing the operation conditions, mainly the electrolysis temperature.

"It is a technology with great practical potential, especially for its use in energy storage and production of synthetic fuels and green chemicals. This aspect has significant importance nowadays, as both transportation and industry are immersed in a transition towards decarbonisation and electrification, meaning they have to meet very challenging targets in 2030 and 2040 in order to decrease the consumption of energy and substances from fossil sources, mainly natural gas and oil," highlights Prof. Jose Manuel Serra, researcher from the Chemical Technology Institute (ITQ).

Green hydrogen for industrial and transportation uses
The main use of this "disruptive" technology reported by researchers from the Information Technologies and Communications Institute (ITACA) of the UPV and ITQ, joint centre of the UPV and CSIC, is the production of green hydrogen (produced without emitting greenhouse gases) from water, for industrial and transportation uses.

As noted by the ITQ and ITACA team, it is a technology with great potential for the automotive sector, specifically for cars fuelled by fuel cells and hybrids or large vehicles such as trains or ships.

But also for the chemical industry, metallurgy, the ceramic sector or the production of fertilisers, among many other sectors. "This method will make it possible to transform renewable electricity, typically of solar or wind origin, into added value products and green fuels. It has countless uses and we hope that new uses will emerge for energy storate and process industry, by tuning materials compositon and operation conditions ," highlights Prof. Jose Manuel Catala, researcher at the ITACA institute of the UPV.

In the article published in Nature Energy, the researchers also provide a techno-economic study that reveals that this technology would enable to obtain high energetic efficiency, and that the cost of the facilities (CAPEX) to carry out the hydrogen production process are very competitive compared to conventional technologies for hydrogen production.

Ultra-fast charging of batteries... and space exploration
The UPV and CSIC team is studying other future uses for this technology, and is currently focusing its efforts on the use for the ultra-fast charging of batteries "Our technology could enable a practically instantaneous reduction (electron injection) of the electrode (metallic anode) that stores energy.

In other words, we would go from a (2D) layer-based progressive charging process, which can take hours, to a simultaneous recharging process in the entire (3D) volume of the material storing the energy, which would make it possible to charge a battery in a few seconds," says Prof. Catala.

Another use would be the direct generation of oxygen with microwaves, which opens a broad spectrum of new uses. "One specific use would be the direct production of oxygen with extra-terrestrial rocks (regoliths), which could have a key role in the future exploration and colonisation of the Moon, Mars or other moons in the solar system," concludes Prof. Serra.

A short history of the discovery
The team of researchers observed that when ionic materials were treated with microwaves, the materials displayed unusual changes in their properties, especially in their electronic conductivity, changes that did not happen upon conventional heating. "We were very intrigued about these sudden changes in their electrical properties and wanted to understand what process was going on. For this reason, we keep on designing new experiments, new microwave reactors and utilizing other analytical techniques," explains Prof. Catala.

The team from the ITACA and ITQ institutes verified that microwaves interact with these materials by 'accelerating' the electrons and triggering the release of molecules of oxygen from their structure (which is also called reduction).

This change became visible to us by sudden alterations to the conductivity at relatively low temperatures (approximately 300+ C). "This non-equilibrium state is maintained while microwaves are applied, but tends to revert back via reoxygenation (reoxidation) when microwaves are switched off. At first sight, we realised the great practical potential of this discovery, especially now that very ambitious goals should be meet in the next two decades to reach an economy with zero net greenhouse gas emissions," concludes Prof. Serra.

Research paper


Related Links
Polytechnic University of Valencia
All About Oil and Gas News at OilGasDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


OIL AND GAS
Framatome's Covalion to design and build hydrogen refueling station for moBiel
Paris, France (SPX) Nov 11, 2020
Framatome, an EDF Group company, recently signed a contract with moBiel GmbH to build a hydrogen refueling station for a pilot hydrogen-powered bus fleet in Bielefeld, Germany. Framatome's Covalion team will design, engineer, construct, commission and maintain the hydrogen refueling station, which will supply clean energy to power new city buses that use hydrogen fuel cells. The station is expected to begin operating in December 2021. "This contract with moBiel GmbH is an important milestone ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OIL AND GAS
Catalyzing a zero-carbon world by harvesting energy from living cells

Microbe "rewiring" technique promises a boom in biomanufacturing

Tough, strong and heat-endure: Bioinspired material to oust plastics

Luminescent wood could light up homes of the future

OIL AND GAS
Controlling perovskite ions' composition paves the way for device applications

New green materials could power smart devices using ambient light

UK government commissions space solar power stations research

New machine learning program to accelerate clean energy generation

OIL AND GAS
Policy, not tech, spurred Danish dominance in wind energy

California offshore winds show promise as power source

OIL AND GAS
Framatome's Le Creusot plant ramps up production of replacement components for French power stations

Tsunami-hit Japanese nuclear reactor gets restart approval

German court demands govt review compensation for nuclear exit

UK mini nuclear stations would create 6,000 jobs: Rolls-Royce

OIL AND GAS
Engineering a way out of climate change with genetically modified organisms

Bank of England says to launch climate change tests

UK hopes climate change can warm frosty Biden ties

Under-pressure Australia 'welcomes' Biden climate pledge

OIL AND GAS
Honda wins world-first approval for Level 3 autonomous car

DoorDash IPO filing shows growth surge in pandemic

ULEMCo collaborates with JCB and Bucher to produce new hydrogen vehicle

GM says earnings jump 72%, cites improving auto demand in US, China

OIL AND GAS
Iraq's pro-Iran factions see smoother sailing with Biden at helm

Flash protests turn to clashes in Iraq

Iraqis protest Macron comments outside French embassy

Saddam's right-hand man dead: dictator's daughter

OIL AND GAS
Iran offers glimpse of rail-based multiple launch system for use at its 'underground missile cities'

South Korean military captures North Korean crossing border

Britain to nationalize its nuclear weapons industry

Air Force launches Minuteman III missile 4,200 miles in test









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.