Manmade earthquakes in Oklahoma on the decline by Staff Writers Stanford CA (SPX) Dec 02, 2016
New regulations in Oklahoma that call for reductions in the amount of wastewater being injected into seismically active areas should significantly decrease the rate of manmade, or "induced," earthquakes in the state, Stanford scientists say. "Over the past few years, Oklahoma tried a number of measures aimed at reducing the rising number of induced quakes in the state, but none of those actions were effective," said Mark Zoback, the Benjamin M. Page Professor at Stanford's School of Earth, Energy and Environmental Sciences. While wastewater from oil and gas drilling have been disposed of through underground injection in this area for many decades, induced seismicity was not a problem until the volumes being injected were massively increased, starting around 2009. In the past six years, billions of barrels of wastewater were injected into the Arbuckle formation, a highly permeable rock unit sitting directly on top of billion-year-old rocks containing numerous faults. Research Zoback and his graduate student Rall Walsh published last year established the correlation in space and time between the areas where the massive injection was occurring and the induced earthquakes. They showed how pressure buildup resulting from the wastewater injection can spread out over large areas and trigger earthquakes tens of miles from the injection wells. In light of these findings, the state's public utilities commission - called the Oklahoma Corporation Commission --last spring called for a 40 percent reduction in the volume of wastewater being injected. The bulk of that wastewater comes from oil production in several water-bearing rock formations that had not been extensively drilled until a few years ago. A new physics-based statistical model developed by Stanford postdoctoral fellow Cornelius Langenbruch and Zoback, and detailed online this week in the journal Science Advances, predicts that the continued reduction of injected wastewater will lead to a significant decline in the rate of widely-felt earthquakes - defined as quakes measuring magnitude 3.0 or above - and a return to the historic background level in about five years. "When the volume of wastewater injection peaked in 2015, Oklahoma was experiencing two or more magnitude 3.0 earthquakes per day. Before 2009, when wastewater injection really started ramping up, the rate was about one per year. "Several months after wastewater injection began decreasing in mid-2015, the earthquake rate started to decline," Langenbruch said. "There is no question that there is a significantly lower seismicity rate than there was a year ago." Unfortunately, even though the rate of induced quakes will continue declining, the probability of potentially damaging earthquakes like the magnitude 5.8 earthquake that struck the town of Pawnee in September (the largest to have occurred in Oklahoma in historic time) will remain elevated for a number of years, the Stanford scientists say. "As long as elevated pressure persists throughout this region," Zoback said, "there will be an increased risk of triggering damaging earthquakes."
Related Links Stanford's School of Earth, Energy and Environmental Sciences All About Oil and Gas News at OilGasDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |