First statistical characterisation of methane ultra-emitters from oil and gas by Staff Writers Paris, France (SPX) Feb 04, 2022
A groundbreaking study of methane ultra-emitters linked to oil and gas activities that for the first time provides a statistical characterisation of these major drivers of climate change across various production activities. The study, based on Kayrros data, shows a direct relationship (power law) between ultra-emitters monitored and measured from space and smaller methane leaks detected by local sensors and aircraft surveys. Study contributor and Kayrros co-founder and scientific director, Alexandre d'Aspremont, said: "Our study supplies a first systematic estimate of large methane leaks that can only be seen from space, showing how these detections relate to wider methane monitoring processes. This is a giant step towards overcoming the current limitations of the methane reporting system which is critical to meeting COP26 commitments to slash methane. "Global oil and gas accounts for at least a quarter of human-made methane emissions, and recent studies provide mounting evidence that its emissions have been widely underestimated by conventional international UNFCCC protocols in the absence of a global monitoring system able to capture all oil and gas leaks." Kayrros data scientists Clement Giron and Matthieu Mazzolini also participated in the study. Other co-authors include Thomas Lauvaux and Philippe Ciais of LSCE, Riley Duren and Daniel Cusworth of Carbon Mapper, and Drew Shindell of Duke University. The Franco-American team of scientists performed a systematic analysis of thousands of images produced daily by the European Space Agency satellite mission Sentinel-5P to estimate the amount of methane released into the atmosphere by oil and gas production activities in 2019 and 2020. "The actual number of ultra-emitters varies by country, but the relationship between the number of sources and their magnitude remains the same," said lead author Thomas Lauvaux, research scientist at the French Climate and Environmental Science Laboratory (Laboratoire des Sciences du Climat et de l'Environnement, LSCE). "Intermittent emission events of 25 tons per hour or more can only be detected with monitoring satellites. These huge intermittent events that are normally undetectable consistently account for 8% to 12% of the overall methane emissions from oil and gas activities of any producing country." The team used high-resolution atmospheric modelling and machine learning algorithms to detect and quantify hundreds of methane plumes. They then aggregated their emissions estimates at a national scale to evaluate the contribution of ultra-emitters to national reported emissions. To translate their results into a cost-benefit analysis, Shindell performed climate model simulations to quantify the additional contribution to climate change. The team detected about 1,800 ultra-emitters (25 t/h or more) over the two years, of which roughly 1,200 come from oil and gas facilities and the remainder from a combination of coal mines, agriculture and waste management. Eliminating these oil-and-gas related events would be tantamount to removing 20 million cars from the road based on the 100-year global warming power (GWP100) of methane. Highlights from the study include: + The study focused on six major oil and gas producing countries that together account for the majority of ultra-emitters identified through the processing of raw data from the TROPOspheric Monitoring Instrument (TROPOMI) carried by Sentinel-5: Russia, Turkmenistan, USA, Iran, Kazakhstan and Algeria. + Surveyed events range from a lower threshold of 25 t/h to plumes spread over hundreds of kilometres and released at a rate of several hundred t/h. + 50 to 150 events detected per month on average. + Based on adjusted emissions, oil and gas ultra-emitter estimates represent 8-12% of oil and gas methane emissions from national inventories, a contribution not included in current inventories. + Eliminating these emissions is easily achievable. + For the first time, the study quantifies the benefit of eliminating ultra-emitters. Estimates range from $6 billion for Turkmenistan and $4 billion for Russia to $400 million each for Kazakhstan and Algeria. + Only monitoring satellites can systematically detect ultra-emitters. In-situ sensors and short aerial surveys can only detect smaller leaks. Tasking satellites also are constrained in their capacity to detect ultra-emitters by their low temporal resolution and limited geographical coverage. At lower emission rates, the number of emitters invisible to TROPOMI far surpasses visible ultra-emitters, however. + While TROPOMI data help reveal hard-to-detect ultra-emitters, understanding the power-law distribution of these ultra-emitters also sheds light on the link between intermittent high-resolution imagery from aerial surveys and regular low-resolution images from TROPOMI. This goes a long way towards filling the gaps in oil-and-gas methane emission coverage and resolving the wide discrepancy between atmospheric measurements and bottom-up methane inventories. "The staggering scale of these ultra-emitters and the huge benefit that would result from their elimination far exceed what we anticipated when Kayrros started investing in the development of our Methane Watch platform," said Antoine Rostand, Kayrros President and co-founder. "However concerning the rate of methane emissions from oil and gas may be today, it is comforting to know that these emissions can, for the most part, easily be eliminated - and hugely gratifying to see that our research and our partnership with LSCE has been so rewarding and yielded such hugely beneficial results for the world." "To our knowledge, this is the first worldwide study to estimate the amount of methane released into the atmosphere by maintenance operations and accidental releases," said Lauvaux. "Unreported ultra-emitters explain in part the under-estimation in official O&G reported emissions by countries as documented by previous studies. The atmospheric monitoring approach enabled by recent satellite missions provides a unique perspective on O&G activities, and the potential to mitigate these large releases of methane." Pr. Shindell said: "We find that capturing the methane from these ultra-emitters provides enormous benefits via reduced climate change and improved air quality, so that society as a whole would come out billions of dollars ahead by eliminating these ultra-emitters. As the captured methane is a valuable commodity, the companies or countries capturing the wasted gas also typically come out ahead." "Our work on oil and gas is just the beginning," said Duren." The team will now look at methane emissions from coal extraction and farming activities thanks to several recent satellite missions. These instruments provide images at higher resolution but only cover parts of the globe at lower frequency, but with a higher detection limit than Sentinel-5P. The systematic aspect of satellite monitoring remains a key parameter for future monitoring." National greenhouse gas emissions rely primarily on self-reporting, while atmospheric data offers a more rigorous approach to emissions accounting, more independent and more transparent," Lauvaux added. "In the future, atmospheric measurements will play a more important role in mitigation policies by identifying actionable measures and by monitoring the implementation of climate actions." Map showing the location of the main gas pipelines and the main sources of methane emissions related to the oil and gas industry. Kayrros, Esri, HERE, Garmin, FAO, NOAA, USGS, OpenStreetMap contributors, and the GIS User Community
Research Report: "Global Assessment of Oil and Gas Methane Ultra-Emitters"
SwRI adds capability for testing hydrogen and natural gas blends San Antonio TX (SPX) Feb 03, 2022 Southwest Research Institute has upgraded its test equipment to allow for testing the effects of transporting natural gas and hydrogen blends in the same pipeline. The latest capability will help clients research hydrogen-based solutions to understand if infrastructure for climate-warming greenhouse gases can be transitioned to handle more sustainable resources. "Hydrogen is an excellent alternative to existing fossil fuels such as natural gas and has the potential to reduce the carbon footprint o ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |