An improved water splitting method has high hydrogen yield by Staff Writers Busan, South Korea (SPX) Sep 01, 2021
A hydrogen economy is one way in which a carbon neutral world can thrive. At present, the simplest way to produce hydrogen fuel is electrochemical water splitting: running electricity through water in the presence of catalysts (reaction-enhancing substances) to yield hydrogen and oxygen. This reaction, however, is very slow, requires specialized conditions and noble-metal catalysts, and is overall expensive. Thus, achieving a high hydrogen yield in an energy-efficient manner at low cost is challenging. To date, hydrogen production from water splitting has not been successfully commercialized. Now, a team of researchers from Pusan National University, Korea, led by Professor Kandasamy Prabakar, have developed a method to design a novel electrocatalyst that can solve some of these problems. Their work was made available online on April 6, 2021, and will be published in print in the September 2021 issue of Volume 292 of Applied Catalysis B: Environmental. Describing the study, Prof. Prabakar says, "Today, 90% of hydrogen is produced from steam reforming processes that emit greenhouse gases into the atmosphere. In our laboratory, we have developed a non-noble metal based stable electrocatalyst on a polymer support which can effectively produce hydrogen and oxygen from water at a low-cost from transition metal phosphates." Prof. Prabakar's team fabricated this electrolyzer by depositing cobalt and manganese ions, in varying proportions, on a Polyaniline (PANI) nanowire array using a simple hydrothermal process. By tuning the Co/Mn ratio, they have achieved an overall high surface area for the reactions to occur, and combined with the high electron conducting capacity of the PANI nanowire, faster charge and mass transfer was facilitated on this catalyst surface. The bimetallic phosphate also confers bifunctional electrocatalytic activity for the simultaneous production of oxygen and hydrogen. In experiments to test the performance of this catalyst, they found that its morphology substantially decreases the reaction overpotential, thereby improving the voltage efficiency of the system. As a testament to durability, even after 40 hours of continuous hydrogen production at 100 mA/cm2, its performance remains consistent. And water splitting was possible at a low input voltage of merely 1.54V. In addition to these advantages, is the low cost of transition metals. Indeed, the system can be scaled and adapted for application to a myriad of settings. Speaking of possible future applications, Prof. Prabakar explains, "Water-splitting devices that use this technology can be installed onsite where hydrogen fuel is required, and can function using a low energy input or a completely renewable source of energy. For instance, we can produce hydrogen at home for cooking and heating using a solar panel. This way, we can achieve carbon neutrality well before 2050."
New Israel mission in Dubai eyes Gulf oil megadeal Dubai (AFP) Sept 1, 2021 Israel's top diplomat in Dubai has said he is hopeful a deal to ship Emirati oil will clear environmental hurdles as trade booms after the groundbreaking opening of ties. Ilan Sztulman Starosta, who heads Israel's first consulate in the UAE economic hub, told AFP that trade between the two countries would "easily" surpass $1 billion within a year if the Covid pandemic abates. His assessment came despite Israel freezing the Gulf oil deal last month over fears that spills could threaten unique cor ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |