Oil and Gas News from OilGasDaily.Com  
OIL AND GAS
Increasing oil's performance with crumpled graphene balls
by Staff Writers
Chicago IL (SPX) Jan 28, 2016


About five years ago, Jiaxing Huang discovered crumpled graphene balls - a novel type of ultrafine particles that resemble crumpled paper balls. The particles are made by drying tiny water droplets with graphene-based sheets inside.

When an automobile's engine is improperly lubricated, it can be a major hit to the pocketbook and the environment. For the average car, 15 percent of the fuel consumption is spent overcoming friction in the engine and transmission. When friction is high, gears have to work harder to move. This means the car burns more fuel and emits more carbon dioxide into the atmosphere.

"Every year, millions of tons of fuel are wasted because of friction," said Jiaxing Huang, associate professor of materials science and engineering at Northwestern University's McCormick School of Engineering. "It's a serious problem."

While oil helps reduce this friction, people have long searched for additives that enhance oil's performance. Huang and his collaborators discovered that crumpled graphene balls are an extremely promising lubricant additive. In a series of tests, oil modified with crumpled graphene balls outperformed some commercial lubricants by 15 percent, both in terms of reducing friction and the degree of wear on steel surfaces.

Supported by the Office of Naval Research, the team's research is described in an article published online on January 25 in the Proceedings of the National Academy of Sciences. Xuan Dou, a graduate student in Huang's laboratory, is the paper's first author. Northwestern Engineering's Yip-Wah Chung, professor of materials science and engineering, and Q. Jane Wang, professor of mechanical engineering, are also authors on the paper.

About five years ago, Huang discovered crumpled graphene balls - a novel type of ultrafine particles that resemble crumpled paper balls. The particles are made by drying tiny water droplets with graphene-based sheets inside. "Capillary force generated by the evaporation of water crumples the sheets into miniaturized paper balls," Huang said. "Just like how we crumple a piece of paper with our hands."

Shortly after making this discovery, Huang explained it to Chung during a lunch in Hong Kong by crumpling a napkin and juggling it. "When the ball landed on the table, it rolled," Chung recalled. "It reminded me of ball bearings that roll between surfaces to reduce friction."

That "a-ha!" moment led to a collaboration among the two professors and Wang, who was in the middle of editing a new Encyclopedia of Tribology with Chung.

Nanoparticles, particularly carbon nanoparticles, previously have been studied to help increase the lubrication of oil. The particles, however, do not disperse well in oil and instead tend to clump together, which makes them less effective for lubrication. The particles may jam between the gear's surfaces causing severe aggregation that increases friction and wear. To overcome this problem, past researchers have modified the particles with extra chemicals, called surfactants, to make them disperse. But this still doesn't entirely solve the problem.

"Under friction, the surfactant molecules can rub off and decompose," Chung said. "When that happens, the particles clump up again."

Because of their unique shape, crumpled graphene balls self-disperse without needing surfactants that are attracted to oil. With their pointy surfaces, they are unable to make close contact with the other graphene balls. Even when they are squeezed together, they easily separate again when disturbed.

Huang and his team also found that performance of crumpled graphene balls is not sensitive to their concentrations in the oil. "A few are already sufficient, and if you increase the concentration by 10 times, performance is about the same," Huang said. "For all other carbon additives, such performance is very sensitive to concentration. You have to find the sweet spot."

"The problem with finding a sweet spot is that, during operation, the local concentration of particles near the surfaces under lubrication could fluctuate," Wang added. "This leads to unstable performance for most other additive particles."

Next, the team plans to explore the additional benefit of using crumpled graphene balls in oil: they can also be used as carriers. Because the ball-like particles have high surface area and open spaces, they are good carriers for materials with other functions, such as corrosion inhibition.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Northwestern University
All About Oil and Gas News at OilGasDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
OIL AND GAS
China starts gas production with Chevron
Beijing (UPI) Jan 26, 2016
China's largest energy company said it started commercial gas production from a field located in the Sichuan basin in southwest China. State-owned China National Petroleum Corp., working alongside a subsidiary of U.S. supermajor Chevron, said it started gas operations at the Chuandongbei project, producing gas taken from the Luojiazhai natural gas field. The gas field has a produ ... read more


OIL AND GAS
Australian farmers to benefit from renewables boost

War Between Saudi Arabia And Iran Could Send Oil Prices To $250

China 2015 electricity output down 0.2 percent

Clean energy to conquer new markets in 2016

OIL AND GAS
Corvus Energy announces new performance specifications for lithium ion battery systems

Creation of Jupiter interior, a step towards room temp superconductivity

Non-platinum catalysts for fuel cells remain a mystery

Researchers prove surprising chemistry inside a potential breakthrough battery

OIL AND GAS
Assessment aims to maximize greenhouse gas reductions from bioenergy

One-stop shop for biofuels

Automakers' green push lifts use of hemp, citrus peel

BESC study seeks nature's best biocatalysts for biofuel production

OIL AND GAS
Chinese nuclear firm named world's 5th largest

Russia Pledges $300,000 to IAEA's Innovative Nuclear Reactors Project

India, France to build 6 nuclear reactors at Jaitapur Plant

One dead in mudslide at French nuclear waste site

OIL AND GAS
Eritrea president dismisses food crisis fears despite drought

US, Mediterranean face extreme warming: study

Record-Shattering Global Warm Temperatures in 2015

Study maps temperature increases caused by CO2

OIL AND GAS
Bumpy road ahead for electric cars: Tesla boss

Conductive concrete could keep roads safer in winter weather

Head of Apple electric car team to leave: report

Renault hasn't used trickery, CEO says after failed emissions tests

OIL AND GAS
Iraq approved for $1.9B F-16 weapons/munitions buy

'Hundreds' of Western trainers need to help in Mosul push

US and Iraq search for Americans kidnapped in Baghdad

US and Iraq search for Americans kidnapped in Baghdad

OIL AND GAS








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.