Crystals that clean natural gas by Staff Writers Thuwal, Saudi Arabia (SPX) Oct 30, 2018
Removing the troublesome impurities of hydrogen sulfide (H2S) and carbon dioxide (CO2) from natural gas could become simpler and more effective using a metal-organic framework (MOF) developed at KAUST. Upgrading natural gas in this way could help Saudi Arabia to make greater and cleaner use of its abundant natural gas supplies, which can contain high levels of these two impurities. The technology could also promote increased use of natural gas and other industrial gases containing H2S and CO2 worldwide, to reap potentially large environmental and economic benefits. Natural gas is largely composed of methane (CH4) and smaller quantities of other useful hydrocarbons, together with some impurities. Once stripped of contaminants, natural gas burns much more cleanly that other fossil fuels: it emits no sooty particulates as well as less CO2 and polluting oxides of nitrogen and sulfur. This KAUST advance will support Saudi Arabia's Vision 2030 program. This major initiative, aimed at reducing the Kingdom's dependence on oil and developing new environmentally sustainable technologies, includes the goal to source 70 percent of energy from natural gas. "Meeting this challenging target will require enhanced use of sources of natural gas that initially contain significant levels of H2S and CO2," says Youssef Belmabkhout of the KAUST team. MOFs contain metal ions or metal clusters held together by carbon-based organic chemical groups known as linkers. Rearranging different linker and inorganic molecular building blocks fine-tunes the size and chemical properties of the pore system in MOFs and enables them to perform many useful functions. "The challenge we met in this work was to develop a fluorine-containing MOF with pores that allow equally selective adsorption of H2S and CO2 from the natural gas stream," Belmabkhout explains. The research was performed by a group in the KAUST Advanced Membranes and Porous Materials Center, led by Professor Mohamed Eddaoudi. This center has a long history of developing MOF adsorbents for many applications, including catalysis, gas storage, gas sensing and gas separation. "Recent advancements in MOF chemistry at KAUST have permitted the design and construction of various MOF platforms with the potential to address many challenges pertaining to energy security and environmental sustainability," says Eddaoudi. Much of the research on upgrading natural gas was funded by the Saudi national petroleum and natural gas company Aramco. "The interest of Aramco certainly corroborates the importance of this work for the Kingdom," adds Eddaoudi. A new project with Aramco is also underway; it will investigate scaling up the procedure in preparation for commercial exploitation. Further research on optimizing the chemical features of the MOF is also being discussed with other industrial partners. "This is about much more than chemistry," Belmabkhout emphasizes, "It is about combining chemistry, chemical and process engineering, physics and computation together with industrial partners to advance the economic use of a natural resource."
Italy's ENI, France's Total increase production amid higher prices Washington (UPI) Oct 26, 2018 Italian oil company Eni and France's Total reported Friday production increases that followed the start of some operations or the ramp-up of existing ones in a context of relatively higher oil prices. Total, citing higher prices, said its "upstream is well positioned to profit from the increase in the oil price thanks to projected production growth in the order of 8 percent in 2018 and 6-7 percent per year between 2017 and 2020". "It will benefit in the coming months from the start-ups o ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |